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Deliverable No.: 1.3.1 

Translation between CIF and SpaceEx/PHAVer 

  

Executive Summary: 

This report describes the translation processes implemented in SpaceEx/PHAVer to read 

and write CIF models. 

The Compositional Interchange Format (CIF) is a language framework for the exchange of 

continuous and hybrid models between different tools. SpaceEx/PHAVer is a verification 

platform for hybrid Systems. Based on a widely used formalism called hybrid automata, it 

aims to verify the given model of a hybrid system for its safety properties. SpaceEx's 

modeling languague, called SX, has the purpose to allow the exchange of models with a 

graphical user interface and model editor.  

The objective of this report is to show current developments in the direction of bi-directional 

transformation between CIF and SX formats. We explain our work done so far ranging from 

CIF parsing, storing the information in ASTs and finally, conversion to the SX format by 

reading this information. It is important to mention that SpaceEx directly parses the CIF 

format without any need of an external parser. CIF being a very rich format in terms of its 

semantics, we use only a subset of its features, those currently applicable and relevant in the 

very context of SpaceEx.  

Three ways of translation are presented in this report: to read models in the CIF format in 

SpaceEx/PHAVer, to convert models in CIF format to the SpaceEx/PHAVer proprietary SX 

format, and to convert models from SX format to the CIF format. The translation results are 

illustrated with examples. 
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1 Introduction

Because of their vast applicability across various domains, control systems are studied, explored and
employed for analyzing real life problems in many fields, including industrial applications. However, the
difficulty in analyzing them because of their behavior and scalability always motivates the researchers to
design new analysis tools and improve existing ones. Model-based design is one of the most important
and popular design-paradigms based on which such tools are developed. The technique offers increased
safety, better and easy to understand design and therefore, reduced effort in designing these systems.

We have tools like MATLAB/SIMULINK, MODELICA [8], GPROMS [9], UPPAAL [7], PHAVER [4] and
SpaceEx [6], to name a few. Nevertheless, these tools differ in the design formalisms and have their
own strengths and weeknesses. It points to the need of a framework that should integrate all these tools
and in turn, employs useful features of each and every tool leaving aside its complexities. The frame-
work must also automate the transformations among tools with different formalisms and thus, act as an
interconnection between them. But, this framework can only be realized through a generic relied upon
intermediate format that should assist the transformations between a large number of models. The goal
of MULTIFORM is to develope a model exchange framework supported by the Compositional Interchange
Format (CIF) [10].

SpaceEx is a verification platform for a class of dynamical systems known as Hybrid Systems. Based
on a widely used formalism called hybrid automata, it aims to verify the given model of a hybrid system
for its safety properties. SpaceEx’s modeling languague is called SX [2], whose purpose is to allow the
exchange of models with a graphical user interface and model editor. PHAVER [4] is another verification
tool for linear hybrid automata, which is now included in SpaceEx.

The objective of this report is to show current developments in the direction of bi-directional trans-
formation between CIF and SX formats. We explain our work done so far ranging from CIF parsing,
storing the information in ASTs and finally, conversion to the SX format by reading this infomation. It
is important to mention that SpaceEx directly parses the CIF format without any need of an external
parser. CIF being a very rich format in terms of its semantics, we use only a subset of its features, those
currently applicable and relevant in the very context of SpaceEx.

The report is structured as follows. Section 2 presents the SpaceEx internal data structures and the
CIF format. We discuss the subset of the CIF grammar that is successfully parsed by SpaceEx followed
by corresponding railroad diagrams. In Section 3, we first discuss the SpaceEx modeling language i.e., SX
and its constructs. Later, we show an SX component transformed from its CIF counterpart via SpaceEx
internal representation. The transformation from an SX component to the CIF model is demonstrated
in Section 4. In Section 5, we talk about the work yet to be performed in this direction.

2 Reading CIF in SPACEEX

The Compositional Interchange Format (CIF) [10] is the intermediate format for the MULTIFORM model
exchange framework. It is used to establish inter-operability of a wide range of tool formalisms by means
of model transformations. It provides a generic model exchange formalism since it encompasses various
language concepts that are present in modern modeling formalisms. In our case, the use of CIF is
also motivated by the fact that both CIF and SpaceEx are automaton-based languages, which greatly
simplifies the transformation.
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2.1 SPACEEX Internal Data Structures

SpaceEx [5, 6] is a platform for the verification of hybrid systems. It allows one to model hybrid systems
and then verify these models for their safety properties, using its reachability algorithm. It uses an
internal representation for its various model constructs (Figure 1(c)). We discuss, in brief, these data
structures below. However, the reader is encouraged to refer [5] for further details.

1. An automaton consists of a graph in which each vertex, called location, has a flow and an invariant.
The edges in this graph are known as transitions. Each transition is represented with its guard and
the assignment.

2. Automata Network is shown as the parallel composition of one or more automata.

3. The variables and the labels are global (or, have unique names).

4. The automata obtain unique names with proper instantiation rules and the bindings.

2.2 Internal CIF parser of SPACEEX

SpaceEx parses CIF into various meta structures (network, automaton etc.) represented by abstract
syntax trees (ASTs) that are then transformed into corresponding structures of the final SpaceEx model.
We present various grammar constructs and their mappings from CIF to those in SpaceEx (cf. Fig. 1).
Fig. 1(d) depicts the edge semantics of Fig. 1 which means, a different edge type represents a different
relation between two grammar-constructs. For e.g, An edge with a (non-solid) diamond on one end stands
for the “is a part of” relation. Therefore, the AutomatonDefinition is a part of Model in the CIF grammar.
On the same note, an Edge in the AST structure “is mapped to” a transition of the SpaceEx model. And
in the SpaceEx model, a transition “is associated with” a source as well as a target location.

2.2.1 Parser Grammar

In this section, the CIF grammar is defined with the rules for its structures. Each definition is explained
and accompanied by an example for better understanding. It captures a subset of the original CIF
grammar that is significant in our case. Moreover, we have also made an attempt to correlate our
definitions to those in the original grammar, wherever possible. The name of a grammar construct
defined by SpaceEx for parsing CIF, is represented in italics with its first letter capital. Whereas, the
name written in sans serif shows a definition-name in the CIF grammar [10].

1. Network : Currently, we deal with only one network component where a Network is expressed as a
Model with either of below 2 definitions (cf. Figure 2):

• One or more automata are first instantiated in the network definition and defined later. The
network definition consists of a network name, parameters declarations, Automata_decs fol-
lowed by Automata_defs.

model PushButton_Lamp()=
|[ act PushButton1On
, PushButton1Off
, Lamp1On
, Lamp1Off
:: button1 : Button (PushButton1On, PushButton1Off)
|| lamp1 : Lamp (Lamp1On, Lamp1Off)
|| Controller (PushButton1On, PushButton1Off, Lamp1On, Lamp1Off)
|| user1 : User (PushButton1On, PushButton1Off) ]|

2
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automaton Button(inout act sync ButtonOn, ButtonOff) =
|( mode released = initial

(act ButtonOn) goto pushed
, pushed = (act ButtonOff) goto released
)|

automaton Controller(inout act sync ButtonOn, ButtonOff, LampOn, LampOff) =
|( mode released = initial

(act ButtonOn) goto pushed
(act LampOff) goto released

, pushed = (act ButtonOff) goto released
(act LampOn) goto pushed

)|

automaton Lamp(inout act sync LampOn, LampOff) =
|( mode off = initial

(act LampOn) goto on
, on = (act LampOff) goto off
)|

automaton User(inout act sync ButtonOn, ButtonOff) =
|( clock control real t = 0.0

; mode off = initial
(when t ≥ 1.0 now act ButtonOn do t := 0.0) goto on

, on = (when t ≥ 2.0 now act ButtonOff do t := 0.0) goto off
)|

• In another definition, the automata are defined within the network definition with network
name, parameters declarations and Automata.

model TankController()=
|[ cont control real V = 10.0

; var real Qi, Qo

; disc control nat n = 0

:: Tank : |( mode physics = initial
inv V ′ = Qi−Qo

, Qi = n ∗ 5.0
, Qo = V

)|

||

Controller : |( mode closed = initial
(when V ≥ 2 now do n := 1) goto opened

, opened =(when V ≥ 10 now do n := 0) goto closed
)|

]|

2. Automaton_dec (Fig. 5(iv)) : It is equivalent to AutomatonInstantiation where an instance name
(optional) is followed by the automaton name i.e., instance type and the expressions that are passed
as arguments to the Automaton.
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button1 : Button(PushButton1On, PushButton1Off)

or,

Button(PushButton1On, PushButton1Off)

3. Automaton : An Automaton (Fig. 3) is either an AutomatonDefinition or an Automaton.

• AutomatonDefinition has a name followed by formal parameters declarations (optional) and/or
local parameters declarations and the Modes.

automaton User(inout act sync ButtonOn, ButtonOff) =
|( clock control real t = 0.0

; mode off = initial
(when t ≥ 1.0 now act ButtonOn do t := 0.0) goto on

, on = (when t ≥ 2.0 now act ButtonOff do t := 0.0) goto off
)|

• An Automaton is expressed with its name, local parameter declarations (optional) and ’,’ seper-
ated Modes.

Tank : |( mode physics = initial
inv V ′ = Qi−Qo

, Qi = n ∗ 5.0
, Qo = V

)|

4. Mode (Fig. 4) is ModeDef having a name, keyword initial (optional), its dynamics (Dyns) and the
Edges.

mode off = initial
(when t ≥ 1.0 now act ButtonOn do t := 0.0) goto on

5. The Dyns (Fig. 6) are defined with a keyword (inv or flow)1 and one or more ’,’ seperated Dyn’s
(Expressions).

inv V ′ = Qi−Qo

, Qi = n ∗ 5.0

, Qo = V

6. An Edge (Fig. 7) or Edge can have a Guard and/or, a label (act and the label name), Update and
in the end, goto statement (goto and the target location name).

(when t ≥ 1.0 now act ButtonOn do t := 0.0) goto on

or,

(when t ≥ ttr now do (V B, g) := (0, 1)) goto filling

1SpaceEx distinguishes between an invariant and flow so that even if the invariant is not empty in a location, the flow
can be empty i.e., flow = φ, which means time can’t pass in that location.

5



or,

(now do x := 1) goto pushed

7. Guard (Fig. 8(i)) is represented with the keyword when followed by an Expression.

when V ≥ 2

8. Update (Fig. 8(i)) is shown as keyword do and an Expression.

do t := 0.0

9. The Declarations are seperated by ’;’ (cf. Figure 10(i)).

cont control real V = 10.0

; var real Qi, Qo

10. A Declaration (Fig. 10(ii)) is either a formal parameters’ (non-local) declaration or the local
parameters’ declaration.

• A formal parameters’ declaration is consisting of Param_type, control (optional), Static_type
and ‘,’ seperated Dec_expressions.

inout act sync ButtonOn, ButtonOff

• On the other hand, a local parameters’ declaration is formed of Param_type, Static_type (op-
tional), sync (optional) and Dec_expressions.

clock control real t = 0.0

11. A Dec_expression (Fig. 11) is either just an identifier or an identifier (parameter name) followed
by its Value where, Value is either an int or double.

12. Scoped variables are assigned unique names with a prefix notation.
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2.2.2 Railroad Diagrams
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3 Transforming CIF to SX Format

3.1 Modeling in SX Format

SpaceEx’s modeling language, called SX [2], is an XML based format supported by a graphical model
editor. SX Models are similar to the hybrid automata known in literature [1], except that they provide
a richer mechanism of hierarchy, templates and instantiations. An model consists of one or more com-
ponents. When SpaceEx reads a model file, it translates the components into either an automaton or
into a network of automata in parallel composition. So, for the purposes of analysis, a component defines
a hybrid automaton, with everything else (hierarchy etc.) being syntactic sugar whose only purpose is
making the construction of complex models easier.

3.1.1 Components

A model is made up of one or several components. There are two types of components: A base component
corresponds to a single hybrid automaton, and is defined by its locations and transitions. A network
component consists of one or more instantiations of other components (base or network) and corresponds
to a set of hybrid automata in parallel composition. Every component has a set of formal parameters. A
formal parameter may be:

• a continuous variable with arbitrary dynamics,

• a constant, which is treated as a variable with constant dynamics, i.e., it does not change its value
over time.1 It may be attributed a value, like 9.81, when it is instantiated in a network component.

• a synchronization label.

A formal parameter is part of the interface of a component, unless it is declared as local to the
component.

3.1.2 Base Components

A base component in the model is translated by SpaceEx into a hybrid automaton [1]. It consists of a graph
in which each vertex, called a location, is associated with a flow, which is a set of differential equations
(or inclusions) that defines the time-driven evolution of the continuous variables. A state consists of a
location and a value for each of the continuous variables. The edges of the graph, called transitions,
allow the system to jump between locations, thus changing the dynamics, and instantaneously modify
the values of continuous variables according to an assignment (sometimes called a reset or a discrete
jump). The jumps may only take place when the values of the variables satisfy the constraints of the
guard of the transition. The system may only remain in a location as long it satisfies the constraints of
the invariant associated with the location. All behavior originates from a given set of initial states.

An execution of the automaton is a sequence of discrete jumps and pieces of continuous trajectories
according to its dynamics, and originates from one of the initial states. A state is reachable if an execution
leads to it. Given a set of forbidden states, the system is safe if the bad states are not reachable.

Dynamics and Constraints The flow of a location is a set of differential equations. The type of con-
straints allowed on the derivatives depends on the scenario. The LGG scenario accepts non-deterministic
affine dynamics of the form

ẋ = Ax+Bu+ b0, (1)
1A variable with constant dynamics is commonly referred to as a “parameter” of a hybrid automaton, but these should

not be confused with the formal parameters of components.
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where ẋ is the derivative of x with respect to time and u is a set of non-deterministic inputs. Constraints
on u can be integrated in the invariant. The model format does not currently support vector or matrix
notation. A system of the above form is described by the expression

x1’ == a11*x1 + ... + b11*u1 + ... +b01 &

xn’ == an1*x1 + ... + bn1*u1 + ... +b0n

where the prime behind a variable denotes its derivative.
Similarly, the discrete jump associated with a transition modifies the variables with an assignment of

the form
x := Rx+ Su+ s0,

where u is a set of non-deterministic inputs that is given by constraints in the invariant of the source
location of the transition. The assignment can be described in two forms, either as

x1 := r11*x1 + ... + s11*u1 + ... &

xn := rn1*x1 + ... + sn1*u1 + ...

or in a general relation form as linear constraints over x and x′, where the prime denotes the value after
the transition.

Variables that are not assigned explicitly are supposed to remain constant during the transition.
Guards and invariants can be arbitrary convex linear constraints on the variables, where conjunctions

are denoted by an ampersand (&). For example:

a*x+b*y == 1 & c <= z <= d

A universal constraint can be denoted with true,and an unsatisfiable constraint by false.

3.1.3 Network Components

A network component allows one to instantiate one or more components (base or other network compo-
nents), connect them via their variables and labels, and attribute values to their constants.

When the model is parsed by SpaceEx, each base component is translated into a corresponding hybrid
automaton, and each network component is translated into the parallel composition of its subcomponents.
Semantically, the parallel composition of hybrid automata is itself a hybrid automaton. In SpaceEx, this
composition is carried out on the fly, so that only the reachable parts of that automaton are actually
created in memory.

When instantiating a component H in network K, every formal parameter of H must be bound to
either a (potentially local) formal parameter of K or to a numeric value.

Components inside the network K can be connected by binding their variables or synchronization
labels to the same symbols in K. Any component can declare any variable as one of its formal parameters,
and impose constraints (including equalities) on the variable and its derivative. Different components
can impose constraints on the same variable, at the same time or in alternation. In certain application
areas, like mechanics or electrical circuits, this allows one to decompose models into reusable building
blocks, or build models directly from first principles. For example, one component could impose ẋ ≤ 0

and another ẋ ≥ 0. The resulting behaviour has to satisfy both, so ẋ = 0. If the constraints contradict
each other, resulting in, e.g., ẋ ∈ ∅, there is no solution to the differential equations (or inclusions) and
thus there might not be any trajectory after a certain point in time. We say that “time stops” in the
model. This may or may not be a modeling error. In nondeterministic models, states in which time stops
occur frequently as an artifact of over-approximating complex dynamics with simpler ones.

There are no inputs and outputs in SpaceEx models, but are controlled and uncontrolled variables,
which are used in compositional reasoning and are somewhat related [3]. Simply put, a controlled variable
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x cannot be modified outside of the component that “owns” it beyond what is possible in the component
itself. SpaceEx enforces these semantics by modifying every component J in which x is uncontrolled as
follows:

• For any transition of J that does not synchronize with a transition in H, add the assignment
x′ == x.

• To all locations q of J , add a self-loop that nondeterministically resets x to any value in the invariant
of J .

Users who wish to apply compositional reasoning need to declare every variable x as controlled in at
most one base component H, and as uncontrolled in all other base components J . Users who do not care
about compositional reasoning can simply declare all variables as controlled in all components.

Controlled variables are also used by SpaceEx in transition assignments, simply to make the notation
of transitions easier for the user: Unless otherwise specified, a controlled variable remains constant in
a transition. I.e., if the transition assignment does not mention a controlled variable x, SpaceEx adds
the assignment x′ == x. In cases where this is not desired, e.g., for algebraic variables (variables whose
derivatives are not defined), one can declare the variable as uncontrolled.

3.1.4 Initial and Forbidden States

The specification of a reachability problem includes the set of initial states, from which all behaviors of
the system originate. A set of states can be specified in SpaceEx as a Boolean combination of location
constraints and linear constraints over the variables (see invariants and guards). Conjunctions are denoted
by an ampersand (&) and disjunctions by a vertical bar (|). A location constraint is of the form

loc( < component > )== < location >,

loc( < component > )!= < location >,

where the first form denotes a single location in the given base component, and the second form denotes
all other locations of that base component.

3.2 Mapping CIF to SX

The SX format, being modular, captures the models in a user- and GUI-friendly manner. We show, for
the purpose of illustration, the mapping from various CIF constructs to those in an SX model directly
(Figure 12). The PushButton_Lamp CIF model from Section 2 is considered for the discussion.

1. A CIF Model corresponds to a network component in SX which is represented by the parallel
composition of its components. For e.g., the CIF model

model PushButton_Lamp()=
|[ act PushButton1On
, PushButton1Off
, Lamp1On
, Lamp1Off
:: button1 : Button (PushButton1On, PushButton1Off)
|| lamp1 : Lamp (Lamp1On, Lamp1Off)
|| Controller (PushButton1On, PushButton1Off, Lamp1On, Lamp1Off)
|| user1 : User (PushButton1On, PushButton1Off)
]|

corresponds to the following network component in the SX:
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<component id= "PushButton_Lamp.button1∼PushButton_Lamp.lamp1
∼PushButton_Lamp.Controller∼PushButton_Lamp.user1">

<param name="PushButton_Lamp.user1.t" type="real" d1="1" d2="1"
local="false" dynamics="any" controlled="true"/>

<param name="PushButton_Lamp.PushButton1Off" type="label" local="false"/>
<param name="PushButton_Lamp.PushButton1On" type="label" local="false"/>
<param name="PushButton_Lamp.Lamp1Off" type="label" local="false"/>
<param name="PushButton_Lamp.Lamp1On" type="label" local="false"/>

. . .
</component>.

2. An Automaton in the CIF corresponds to a base component in the SX. For example, the User
automaton in the CIF with instantiation user1

user1 : User (PushButton1On, PushButton1Off)

automaton User(inout act sync ButtonOn, ButtonOff) =
|( clock control real t = 0.0

; mode off = initial
(when t ≥ 1.0 now act ButtonOn do t := 0.0) goto on

, on = (when t ≥ 2.0 now act ButtonOff do t := 0.0) goto off
)|

is transformed into the PushButton_Lamp.user1 component.

<component id="PushButton_Lamp.user1">
<param name="t" type="real" d1="1" d2="1" local="false" dynamics="any" controlled="true"/>
<param name="PushButton_Lamp.PushButton1Off" type="label" local="false"/>
<param name="PushButton_Lamp.PushButton1On" type="label" local="false"/>
<location id="1" name="off">

<invariant> true </invariant>
<flow> t’ == 1 </flow>

</location>
<location id="2" name="on">

<invariant> true </invariant>
<flow> t’ == 1 </flow>

</location>
<transition source="1" target="2">

<label>PushButton_Lamp.PushButton1On</label>
<guard> t &gt;= 1 </guard>
<assignment> t’ == 0 </assignment>

</transition>
<transition source="2" target="1">

<label>PushButton_Lamp.PushButton1Off</label>
<guard> t &gt;= 2 </guard>
<assignment> t’ == 0 </assignment>

</transition>
</component>

3. The CIF ModeDef is mapped to a location in the SX component.

4. The Edge in a CIF ModeDef is represented by a transition in the SX component.

5. The invariant, flow and guard in the SX model are mapped from their counterparts in the CIF.

6. For each clock variable, t, in a component, the predicate t′ == 1 is added to the flow in every
location of that component.

7. The identifier following the act keyword in a CIF mode corresponds to the label name in a SX
component.

8. The assignment tag in a transition refers to the reset map. For each control variable, x, absent in the
assignment predicate of a component, a constraint x′ == x is added to the assignment predicate.
This is done to enforce that the values for these variables should not change, unless specified, over
the transition.
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Finally, the PushButton_Lamp network component in SX can be represented as follows:

<?xml version="1.0" encoding="iso-8859-1" ?>
<sspaceex xmlns="http://www-verimag.imag.fr/xml-namespaces/sspaceex" version="0.2" math="SpaceEx">
<component id= "PushButton_Lamp.button1∼PushButton_Lamp.lamp1

∼PushButton_Lamp.Controller∼PushButton_Lamp.user1">
<param name="PushButton_Lamp.user1.t" type="real" d1="1" d2="1"

local="false" dynamics="any" controlled="true"/>
<param name="PushButton_Lamp.PushButton1Off" type="label" local="false"/>
<param name="PushButton_Lamp.PushButton1On" type="label" local="false"/>
<param name="PushButton_Lamp.Lamp1Off" type="label" local="false"/>
<param name="PushButton_Lamp.Lamp1On" type="label" local="false"/>

<location id="1" name="released∼off∼released∼off">
<invariant> true </invariant>
<flow>PushButton_Lamp.user1.t’ == 1 </flow>

</location>
. . .

<location id="5" name="released∼on∼released∼off">
<invariant> true </invariant>
<flow>PushButton_Lamp.user1.t’ == 1 </flow>

</location>
. . .

<location id="12" name="pushed∼off∼pushed∼on">
<invariant> true </invariant>
<flow>PushButton_Lamp.user1.t’ == 1 </flow>

</location>
. . .

<location id="16" name="pushed∼on∼pushed∼on">
<invariant> true </invariant>
<flow>PushButton_Lamp.user1.t’ == 1 </flow>

</location>

<transition source="1" target="12">
<label>PushButton_Lamp.PushButton1On</label>
<guard> PushButton_Lamp.user1.t &gt; = 1 </guard>
<assignment> PushButton_Lamp.user1.t’ == 0 </assignment>

</transition>
<transition source="5" target="16">

<label>PushButton_Lamp.PushButton1On</label>
<guard> PushButton_Lamp.user1.t &gt; = 1 </guard>
<assignment> PushButton_Lamp.user1.t’ == 0 </assignment>

</transition>
. . .

<transition source="16" target="5">
<label>PushButton_Lamp.PushButton1Off</label>
<guard> PushButton_Lamp.user1.t &gt; = 2 </guard>
<assignment> PushButton_Lamp.user1.t’ == 0 </assignment>

</transition>
</component>
</sspaceex>.

3.3 CIF to SX via SpaceEx Internal Data Structures

In our implementation, the actual transformation from a CIF model to the SX model takes place through
SpaceEx internal data structures as shown in Figure 13. As discussed in Section 2, SpaceEx first parses
and maps a CIF model to the SpaceEx model. Then, it transforms this SpaceEx model into an SX model
(cf. Figure 14).
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4 Transforming SX to CIF

SX to CIF transformation is reverse of that discussed in Section 3.3. In this section, we talk about
the mapping from SX to CIF constructs, the notational aspect adapted while transformation, and the
restrictions posed due to SpaceEx internal representation. PushButton_Lamp component from Section
3.2 is considered for the demonstration.

Mapping The network component in SX is mapped to the CIF Model. Each base component is mapped
to an AutomatonInstantiation and AutomatonDefinition in the CIF model as shown in Figure 15. For e.g.,
PushButton_Lamp.user1 base component is instantiated and defined as follows:

PushButton_Lamp.user1 (PushButton_Lamp.user1.t,PushButton_Lamp.PushButton1Off,
PushButton_Lamp.PushButton1On)

automaton PushButton_Lamp.user1 (var PushButton_Lamp.user1.t;
inout act sync PushButton_Lamp.PushButton1Off;
inout act sync PushButton_Lamp.PushButton1On) =

|( mode off = flow PushButton_Lamp.user1.t’ = 1
(when PushButton_Lamp.user1.t >= 1 now
act PushButton_Lamp.PushButton1On do PushButton_Lamp.user1.t’ := 0) goto on

, on = flow PushButton_Lamp.user1.t’ = 1
(when PushButton_Lamp.user1.t >= 2 now
act PushButton_Lamp.PushButton1Off do PushButton_Lamp.user1.t’ := 0) goto off

)|

Similarly, the parameters in an SX component are mapped to the model parameters as well as the formal
parameters in the CIF model.

Notation In the original CIF model, the parameter declarations of one or more parameters of the
same type, are seperated by ‘,’. On the other hand, the declarations of different types of parameters
are delimeted by ‘;’. For simplicity, however, SpaceEx does not distinguish between these two forms of
parameter declarations, during transformation into CIF format. It means that, in the transformed CIF
model, parameter declarations are seperated by ‘;’ irrespective of the parameter types. Importantly, the
notation obtained this way still conforms to the CIF format. For instance,

act PushButton_Lamp.PushButton1Off, PushButton_Lamp.PushButton1On

, PushButton_Lamp.Lamp1Off, PushButton_Lamp.Lamp1On

in the original CIF model is represented in the transformed model as

act PushButton_Lamp.PushButton1Off ; act PushButton_Lamp.PushButton1On

; act PushButton_Lamp.Lamp1Off ; act PushButton_Lamp.Lamp1On

While conjunctions are donated with an ampersand(&) in SX, they are denoted with a comma(,) in CIF.

Restrictions Since the transformation in our implementation takes place through SpaceEx internal
representation, SpaceEx loses some information pertaining to the variable scope/context and automaton
template. Therefore, the variables and labels are used with their global names in the transformed CIF
model. Similarly, SpaceEx treats each base component as a seperate automaton such that every template
instantiation becomes a separate automaton. It leads to as many AutomatonDefinitions as the number of
AutomatonInstantiations in our transformed CIF model.
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The CIF PushButton_Lamp Model shown in Section 2.2, read in SpaceEx and then backtransformed to
CIF, yields the following result:

model PushButton_Lamp()=
|[ var PushButton_Lamp.user1.t
; act PushButton_Lamp.PushButton1Off
; act PushButton_Lamp.PushButton1On
; act PushButton_Lamp.Lamp1Off
; act PushButton_Lamp.Lamp1On
:: PushButton_Lamp.button1 (PushButton_Lamp.PushButton1Off, PushButton_Lamp.PushButton1On)
|| PushButton_Lamp.lamp1 (PushButton_Lamp.Lamp1Off, PushButton_Lamp.Lamp1On)
|| PushButton_Lamp.Controller ( PushButton_Lamp.PushButton1Off, PushButton_Lamp.PushButton1On,

PushButton_Lamp.Lamp1Off, PushButton_Lamp.Lamp1On)
|| PushButton_Lamp.user1 (PushButton_Lamp.user1.t, PushButton_Lamp.PushButton1Off,

PushButton_Lamp.PushButton1On)
]|

automaton PushButton_Lamp.button1(inout act sync PushButton_Lamp.PushButton1Off;
inout act sync PushButton_Lamp.Lamp1On) =

|( mode released = (act PushButton_Lamp.PushButton1On) goto pushed
, pushed = (act PushButton_Lamp.PushButton1Off) goto released
)|

automaton PushButton_Lamp.lamp1(inout act sync PushButton_Lamp.Lamp1Off;
inout act sync PushButton_Lamp.PushButton1On) =

|( mode off = (act PushButton_Lamp.Lamp1On) goto on
, on = (act PushButton_Lamp.Lamp1Off) goto off
)|

automaton PushButton_Lamp.Controller(inout act sync PushButton_Lamp.PushButton1Off;
inout act sync PushButton_Lamp.PushButton1On;
inout act sync PushButton_Lamp.Lamp1Off;
inout act sync PushButton_Lamp.Lamp1On) =

|( mode released = (act PushButton_Lamp.PushButton1On) goto pushed
(act PushButton_Lamp.Lamp1Off) goto released

, pushed = (act PushButton_Lamp.PushButton1Off) goto released
(act PushButton_Lamp.Lamp1On) goto pushed

)|

automaton PushButton_Lamp.user1(var PushButton_Lamp.user1.t;
inout act sync PushButton_Lamp.PushButton1Off;
inout act sync PushButton_Lamp.PushButton1On) =

|( mode off = flow PushButton_Lamp.user1.t’ = 1
(when PushButton_Lamp.user1.t >= 1 now
act PushButton_Lamp.PushButton1On do PushButton_Lamp.user1.t’ := 0) goto on

, on = flow PushButton_Lamp.user1.t’ = 1
(when PushButton_Lamp.user1.t >= 2 now
act PushButton_Lamp.PushButton1Off do PushButton_Lamp.user1.t’ := 0) goto off

)|

5 Future work

SpaceEx can, so far, parse only the linear functions in the CIF. Therefore, the support for parsing
non-linear functions by the SpaceEx is targetted for the implementation during the current phase of the
project.
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